Thermodynamic characterization of bilayer- nonbilayer phase transitions of phospholipid membranes

نویسندگان

  • H Matsuki
  • M Nishimoto
  • K Tada
  • M Goto
  • N Tamai
  • S Kaneshina
چکیده

We determined thermodynamic properties of phase transitions between bilayer and nonbilayer for phosphatidylcholines with saturated hydrophobic chains (C18:0-PC, O-C18:0PC) and phosphatidylethanolamines with unsaturated ones (C18:1(cis)-PE, C18:1(trans)-PE) by means of calorimetry under ambient pressure and optical measurements under high pressure. The thermodynamic quantities of the transitions between bilayer and nonbilayer were much smaller than those of the transition between bilayers (gel-liquid crystal or hydrated crystalliquid crystal transition) for the corresponding phospholipids. Although the nonbilayer formations correspond to a dynamic transformation between lamellar structure and nonlamellar structure, we can say that the order of the lipid molecule in both structures may not appreciably change judging from the smaller thermodynamic quantities. A notable feature of the bilayernonbilayer transitions is the large pressure dependence of the transition temperature as compared with that of the bilayer-bilayer transitions. Comparing the enthalpy and volume changes of the bilayer-nonbilayer transitions with those of the bilayer-bilayer transitions, we concluded that the former transitions can be regarded as the volume-driven transitions for the reconstruction of molecular packing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural analysis of the protein/lipid complexes associated with pore formation by the bacterial toxin pneumolysin.

Pneumolysin, a major virulence factor of the human pathogen Streptococcus pneumoniae, is a soluble protein that disrupts cholesterol-containing membranes of cells by forming ring-shaped oligomers. Magic angle spinning and wideline static (31)P NMR have been used in combination with freeze-fracture electron microscopy to investigate the effect of pneumolysin on fully hydrated model membranes con...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state

BACKGROUND Although biological membranes are organized as lipid bilayers, they contain a substantial fraction of lipids that have a strong tendency to adopt a nonlamellar, most often inverted hexagonal (HII) phase. The polymorphic phase behavior of such nonbilayer lipids has been studied previously with a variety of methods in the fully hydrated state or at different degrees of dehydration. Her...

متن کامل

Sequential detection of multiple phase transitions in model biological membranes using a red-emitting conjugated polyelectrolyte.

The anionic conjugated polyelectrolyte, poly[3-(6-sulfothioatehexyl)thiophene] (P3Anionic), functions as a highly sensitive probe of membrane order, uniquely capable of sequentially detecting the three key phase transitions occurring within model phospholipid bilayers. The observed sensitivity is the result of charge-mediated, selective localisation of P3Anionic within the head-groups of the ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009